Call for papers – The Fukushima Effect: Nuclear histories, representations and debates

At the APSTSN conference in Singapore this July, I had the pleasure of meeting Richard Hindmarsh, associate professor at Griffith University, Australia, and editor of Nuclear Disaster at Fukushima Daiichi: Social, Political and Environmental Issues.

We were each presenting papers in a session entitled “States of Risk II”: Richard’s paper, Nuclear Disaster at Fukushima Daiichi: Social, Political and Environmental Issues – An Overview, introduced the major themes in his recent book. My paper, Nuclear Power: ‘A Malevolent Uncultured Arbiter of our Destiny or ‘A Servant of the Industrial Revolution’?, was about early attitudes to nuclear power in New Zealand. In our session, and in other parts of the conference, there were many other papers about nuclear histories and current attitudes to nuclear technology – many of them referencing the Fukushima disaster.

Richard and I got talking after our session, and kept on talking after the conference, and developed a plan for a follow up volume to Richard’s Nuclear Disaster at Fukushima book. We’re calling the new book The Fukushima Effect: Nuclear Histories, Representations and Debates and are currently seeking submissions.

Here’s some brief information about the aim of the book and the two areas it will cover:

Aim: to produce a high-quality edited book on the effect of the Fukushima disaster three years out from the disaster as another relatively early benchmark on this ‘effect’ and to determine the extent and scope of it, politically and culturally, on either:

Area 1: national histories, debates and policy responses on nuclear power development (in both well established ‘nuclear nations’ and emergent ones (apart from China, South Korea, Taiwan and New Zealand, for which we already have authors).

Area 2: long standing international and national debates in political and cultural context, such as the safety of nuclear energy, radiation risk, nuclear waste management, effect of radiation leaks on marine ecosystems, development of nuclear energy vis-à-vis other energy options, the moral debate, anti- nuclear protest movements, nuclear power representations, and so on.

Abstract submission deadline: 6 December 2013.

Send abstracts to:

Full details are contained in the attached pdf.

Call for papers Fukushima Effect

Posted in History of science, Uncategorized | Tagged , , , , , | Leave a comment

The enigmatic and endangered Kermadec storm petrel

A version of this story first appeared in The Listener on 26 September 2013.

Kermadec storm petrel. Photo by Gareth Rapley.

Kermadec storm petrel. Photo by Gareth Rapley.

One night on Macauley Island, in the Kermadec Islands group, in 1988, ornithologists Alan Tennyson, Graeme Taylor and Paul Scofield noticed something flitting around the Tilley lamp inside their tent. A close inspection of the tiny grey and white bird revealed a Kermadec storm petrel, a species known from only a handful of specimens shot at sea in the 1920s. The bird wasn’t nesting on Macauley, whose seabird population had been devastated by rats, cats and goats, but over subsequent years the birds were occasionally spotted at sea. In 2006, a Navy helicopter dropped Karen Baird and Mike Imber on Haszard Island – a rocky islet next to Macauley – to search for signs of the bird.

Haszard Islet. Photo by Terry Green, Department of Conservation

Haszard Islet. Photo by Terry Green, Department of Conservation

“The area on top of the island is quite small and the ground is soft,” says Baird. “Mike stuck his hand down a burrow and out came a Kermadec storm petrel on an egg. We looked at the amount of habitat available and estimated there were 100 burrows at most, so maybe 100 breeding pairs.”

Haszard Island is a grass-topped lump of volcanic rock sticking sharply out of New Zealand’s northern ocean. The many species of seabirds that live in the Kermadec Islands can survive patrolling sharks, erupting volcanoes and tropical storms, but the rats, mice and cats introduced in the 19th century decimated many species. Haszard Island, though, has remained pest-free, providing a haven for this vulnerable seabird who spends months each year raising a single chick in an earthy burrow.

The Kermadec storm petrel (Pelagodroma albiclunis) is one of the entrants in Forest & Bird’s annual Bird of the Year competition. Bronwen Golder, of the Pew Environment Group’s Kermadec Initiative, is campaign manager for this enigmatic little bird. “The Kermadec storm petrel is one of New Zealand’s endemic species – they’re found nowhere else in the world – but they are critically endangered,” she says. “But it’s a bird we know hardly anything about. How can one of our endemic birds be a total enigma? We want people to know about it, we want people to champion it; ultimately, we want to support scientists to study them and find out more about where they go, and when we find out that, we find out more about our ocean and how it’s working.”

The tiny storm petrel is facing tough competition. About 35 birds are competing for this year’s prize, with celebrity campaign managers backing the weka (Weta Workshop), fairy tern (Hayley Holt), bittern (Te Radar), pukeko (Seven Sharp), kereru (Barnaby Weir), New Zealand dotterel (Sam Judd), shining cuckoo (Wallace Chapman) and black petrel (Jacinda Ardern).

I’m backing the underdog, the enigmatic, critically endangered storm petrel. Thanks to the island eradication expertise of the Department of Conservation, the cats and rats are gone from the Kermadecs now, so perhaps there’s a chance for the storm petrel to spread its wings and find new breeding spots.

You can vote now at

The first Kermadec storm petrel found breeding on Haszard Island in 2006. It's so little and cute! Photo by Karen Baird

The first Kermadec storm petrel found breeding on Haszard Island in 2006. It’s so little and cute!
Photo by Karen Baird

Posted in Kermadecs | Tagged , , , , , | Leave a comment

New Zealand scientists and the atomic bomb

How proud New Zealand must be that the foundations of the amazing discovery
concerning latent atomic energy were laid by her own great scientist Rutherford.
– Viscount Bledisloe in telegram to New Zealand, 9 August 1945[1]

After atomic bombs were dropped on Hiroshima and Nagasaki, Viscount Bledisloe, New Zealand’s former Governor-General, congratulated the country on her role in the victory: Rutherford’s work on the atomic nucleus was acknowledged as laying the scientific foundations for the development of what was then known as the ‘atomic bomb’.

Rutherford was not the only New Zealand scientist involved in the victory. After the bomb was dropped, the Government revealed the formerly secret role of a group of New Zealand scientists who had worked on the bomb programme, and told New Zealanders they should be ‘proud to know that some of her scientists of this generation were at the forefront of this latest development’.[2]

Ernest Marsden, [ca 1940s-1950s]. Alexander Turnbull Library, Wellington, NZ: 1/4-018564-F, sourced from

Ernest Marsden, [ca 1940s-1950s]. Alexander Turnbull Library, Wellington, NZ: 1/4-018564-F, sourced from

The fact that some New Zealand scientists had been involved at all was due, in good part, to New Zealand’s Rutherford connection, and the efforts of Ernest Rutherford’s former student Ernest Marsden, now head of New Zealand’s Department of Scientific and Industrial Research (DSIR). Many of the Commonwealth scientists working on the British nuclear research programme were, like Marsden, past students or colleagues of Rutherford, and Marsden was able to trade successfully on his reputation of being involved in the birth of nuclear physics, which, as Harrie Massey later said, had earned Marsden ‘a place among the immortals’.[3] In December 1943, when Marsden was in Washington DC, he had chanced upon James Chadwick, scientific director of the British nuclear research project, with Australian physicist Mark Oliphant and Danish physicist Niels Bohr, who had been smuggled out of Denmark and was travelling under an assumed name. Following the signing of the Québec Agreement, Chadwick and Oliphant were in Washington with the top-secret task of arranging details of scientific co-operation between the United Kingdom’s and United States’ nuclear research programmes. Oliphant later recalled that they were in their hotel lobby waiting for the elevator when they felt taps on their shoulders and turned to find Marsden in full military uniform. They were taken aback to hear Marsden say, ‘I can guess why two nuclear physicists are here!’[4] During the elevator journey Marsden put in a good word for New Zealand’s participation in the bomb project. He followed this up in London with Sir John Anderson, Chancellor of the Exchequer and the British minister in charge of atomic energy matters.

Robin Williams, a young physicist with the DSIR’s Radio Development Laboratory, recalled reporting to Wellington in July 1944 to find Marsden ‘cock-a-hoop about the fact that he had managed to get a number of New Zealanders in on the atom bomb project’.[5] Their terms of employment seconded them to the United Kingdom DSIR for one year, or for the duration of the war, whichever was longer. Marsden was very keen for New Zealand to launch an atomic research programme when the war finished, and following the secondment the men were required to return to New Zealand for at least one year.

New Zealand scientists on the Manhattan Project
Robin Williams and George Page joined a team of British scientists working on the electromagnetic separation of uranium at the University of California at Berkeley in July 1944. There were two other New Zealand-born scientists on the team who had arrived from the United Kingdom with the British group, one being Maurice Wilkins. (A larger group of New Zealand scientists had travelled to Canada to work with John Cockcroft on the nuclear energy project.)

The electromagnetic separation process involved first accelerating ionised uranium using an electric field, then passing the beam of accelerated ions through a magnetic field which deflected the uranium-235 ions slightly more than it deflected the uranium-238 ions (because of their lower mass), and allowed for separate collection of the two isotopes. The challenge was to design and build the most efficient plant possible, and theoretical and experimental physicists were needed to help solve problems arising from the design challenge and the operation of the plant. Williams mostly worked under Massey with a group of theoretical physicists who contributed to the project by improving the team’s understanding of the fundamental processes involved in uranium separation. Page, along with the engineers on the project, made significant contributions to improving and simplifying the design of the electromagnetic separation plant.

As a scientist-turned-administrator, Marsden was tremendously excited about these new applications of nuclear physics and felt stymied and frustrated in his administrative and managerial role in New Zealand, so far away from the action. He wrote regularly to the American-based scientists, asking, sometimes inappropriately, for details of their research. As he was unable to be involved in the North American research programme, Marsden directed his enthusiasm to plans for a nuclear research team in New Zealand after the war and a search for uranium in the South Island. In an April 1945 letter to one of the New Zealand scientists in Canada, Marsden wrote ‘we shall have a self-contained team on TA [Tube Alloys, the British code name for the nuclear project] in New Zealand in due course’ and ‘we are having quite a lot of fun chasing radioactive minerals (don’t repeat this!). They are fairly widespread in small concentrations and the problem is in care and methods of concentration.’[6] In July 1945 he gained Cabinet approval to place all the men working on the nuclear project in America, together with some remaining in New Zealand, in a special team and on the permanent staff of the DSIR.

New Zealand reaction to the atomic bombs
A year after the New Zealand scientists arrived in the United States, the first weapons were assembled. The first, Trinity, was tested in the Nevada desert in July 1945. Then, on 6 August, an American B-29 bomber exploded a 3-metre-long bomb containing 60 kilograms of uranium-235 above the city of Hiroshima. The press release issued by the White House later that day described the bomb as ‘the greatest achievement of organized science in history’.[7] Three days later, an even more powerful plutonium-based fission bomb was exploded over Nagasaki. Burn injuries and radiation affected many of the initial survivors, and by the end of 1945 an estimated 140,000 people had died from the Hiroshima bomb and 70,000 from the Nagasaki bomb.

Few New Zealanders would have connected the work of New Zealand scientists with the dropping of the first nuclear bombs, but an official New Zealand press release, issued on 13 August 1945, linked the bombs to Rutherford’s early work, provided information about Marsden’s uranium survey, and outlined the role of the New Zealand scientists working in North America, saying how New Zealanders should be proud that her scientists were at the forefront of this latest development.

Japan agreed to surrender the day after Nagasaki was bombed. The general reaction in New Zealand, and in other Allied countries, was one of jubilation and relief. The war that had taken more than 11,000 New Zealand lives and had an impact on every aspect of society was finally over. While it was marvelled at that a single bomb dropped from a great height could cause such devastation, there was initially no awareness of how fundamentally different these bombs were: the conventional bombings of cities like Tokyo, Hamburg and Dresden had produced more casualties than in Hiroshima or Nagasaki, and the longer-term effects of radiation from the bombs were not yet known.

Even people who recognised the horrific aspect of the new type of bomb were able to put a positive spin on it: the New Zealand Listener editorial of 17 August described the use of the atomic bomb as having ‘sickened many people and given others a faint gleam of hope’, but took the stance that it was ‘justifiable to hope as well as to shudder’ — there was hope that the atomic bomb could mean the end of war.[8] There were a few letters to the editor about the bomb — mostly expressing the hope that it could mean an end to war forever — but most New Zealanders were focused on relatives still overseas and on the practical necessities of coping with wartime shortages like how to re-waterproof an old raincoat, or how to make a fowl-house from old sacks and a wooden frame. Some people, however, realised the enormity of this new scientific and military development. A few days after the bombings, philosophy lecturer Karl Popper addressed a packed lecture hall at the University of Canterbury with the words ‘when the first atomic bomb exploded, the world as we have come to know it came, I believe, to an end’.[9]

Robin Williams was holidaying in California with his wife when they saw the news headline announcing the Hiroshima bombing, and he realised that it was the result of the project he had been working on. Williams remembers no discussion of moral issues among the British scientists in his team, and soon after he returned to Berkeley the assembled team began to disperse.

Jim McCahon, who had been employed on Marsden’s South Island uranium search, was in the laboratory in Wellington, analysing samples taken in the search, when he heard a radio bulletin announcing the Hiroshima bombing. He later described himself and his colleagues as having been astounded. When the uranium survey was first announced, they had found the German paper detailing the initial discovery of uranium fission in which ‘they had surmised that this could be used as a source of enormous amounts of energy but … not as an explosion. So we were thinking of nuclear power supplies … but not bombs.’[10]

A Labour Government, under Prime Minister Peter Fraser, was in power in New Zealand when Japan was bombed. There was no big discussion about the atomic bomb in Parliament, but various politicians referred to it, amid debate about other issues, in a mostly positive light. Robert Macfarlane, Labour MP for Christchurch South, accused people who wrote letters to the newspaper expressing indignation about the use of the bomb of being ‘Pacifists’ — a derogatory term during wartime — and saying that apart from its use as a destructive weapon, the atomic bomb ‘might have opened a new era of development for the people of the world, and so some good may arise from its invention’.[11] Major Clarence Skinner, a minister in the Labour Government, spoke proudly of the work of the British and American scientists, who didn’t take long ‘to show the Japanese scientists who could do the best’. He continued by saying, ‘A couple of doses of atomic bomb worked the oracle, and now we see these Japanese taking orders from mere mortal men. I join with other members in offering my gratitude for what has happened during the last few weeks — the ending of the war.’[12] Another Labour MP, Edward Cullen, had a less positive view and expressed his opinion that the atomic bomb was ‘a frightful instrument against humanity’.[13]

Scientists were quick to realise the dangers of this new weapon. In September 1945, Williams and Page were among thirteen British Berkeley scientists, including Wilkins, Oliphant and Massey, who, acting on their belief that ‘the advent of this new weapon of destruction ought to be the signal for renewed efforts to achieve lasting world peace’ signed a letter to British Prime Minister Clement Attlee calling for international control of the use of atomic energy and urging co-operation with Russian and other scientists.[14] This desire for international scientific co-operation with regard to nuclear weapons was widespread. ‘Any attempt at secrecy in this epoch-making field of research is fraught with the gravest possible danger to our civilisation,’ Marsden said.[15]

In January 1946, less than six months after the dropping of the first atomic bombs, New Zealand was one of 51 nations represented at the first General Assembly of the United Nations. The first resolution adopted concerned the establishment of an Atomic Energy Commission, comprising the members of the Security Council, plus Canada, to deal with issues related to the peaceful uses of atomic energy and the elimination of atomic and other weapons of mass destruction. In the general debate in the plenary meeting, the New Zealand representative suggested that control of the Commission should not be left exclusively to the Security Council, as had been suggested, but should rather be the responsibility of the entire General Assembly — this way small countries like New Zealand could continue to be able to have a say on such issues — but this was not heeded.

The atomic age begins – with Atomic Red lipstick
In New Zealand, once the excitement of the end of the war was over, there was a growing awareness that a new age, the ‘atomic age’, had begun. In New Zealand, as in the rest of the Western world, the atomic age was seen as a modern and sophisticated new era. In a 1946 issue of the New Zealand Listener, alongside the advertisements for pointy bras, laxatives and cork-tipped cigarettes, were advertisements for Atomic Red lipstick. It seems in appalling bad taste now to link sexuality with weapons that had killed tens of thousands of people, but the Atomic Red lipstick ads promised women they’d be ‘charged with excitement … devastating … all conquering’, saying women who wore the lipstick were chic and daring.

The atomic age was seen as an exciting and sophisticated new era, as evidenced by Monterey’s advertisements for Atomic Red lipstick. New Zealand Listener, 15 Feb. 1946 and 8 Mar. 1946.

The atomic age was seen as an exciting and sophisticated new era, as evidenced by Monterey’s advertisements for Atomic Red lipstick. New Zealand Listener, 15 Feb. 1946 and 8 Mar. 1946.

 This blog post is adapted from my recent book Mad on Radium: New Zealand in the Atomic Age, available here from Auckland University Press.

[1] Viscount Bledisloe to Minister of External Affairs, 9 Aug. 1945, EA1, W2619, 121/1/1, part 1, ANZ.

[2]‘New Zealand Participation in Atomic Bomb Development’, issued to the press on 13 Aug. 1945, EA1, W2619, 121/1/1, part 1, ANZ.

[3]H. H. Massey, in Marsden Editorial Committee, Sir Ernest Marsden 80th Birthday Book, A. H. & A. W. Reed, Wellington, 1969, p. 47.

[4]M. G. Oliphant, in ibid, p. 102.

[5]Robin Williams, ‘Reflections on My Involvement in the Manhattan Project’, seminar at Victoria University of Wellington, 10 Aug. 2001.

[6]Marsden to George, 5 Apr. 1945, SIR1, W1414, 74/10, ANZ.

[7]Richard Rhodes, The Making of the Atomic Bomb, Touchstone, New York, 1986, p. 735.

[8]Editorial, ‘Horror with Some Hope’, New Zealand Listener, 17 Aug. 1945, p. 5.

[9]Dewes and Green, op cit., p. 9; Strange, op cit.

[10]Personal recollections by Jim McCahon, op cit..

[11]New Zealand Parliamentary Debates 269, 1945, p. 266.

[12]New Zealand Parliamentary Debates 269, 1945, p. 752.

[13]New Zealand Parliamentary Debates 269, 1945, p. 486.

[14]Letter to Attlee, signed by Williams and others, 19 Sep. 1945, Robin Williams’s personal archives.

[15]Marsden to Minister of Scientific and Industrial Research, 12 Sep. 1945, EA1, W2619, 121/1/1, part 1, ANZ.
Posted in History of science, Uncategorized | Tagged , , , , , , | 2 Comments

The dawning of the age of Anthopocene

This article first appeared in The Listener, issue 3716, 30 July 2011

As a geology student in the late 1980s, I learnt a mnemonic to remember the various geological periods, epochs and ages that make up Earth’s history. It started with Cambridge (for Cambrian) and ended with horses (for Holocene), with some Jolly Catholics (Jurassic, Cretaceous) somewhere in the middle. Now some scientists are suggesting we add a new geological epoch, the Anthropocene, defined by the impact of human beings on the planet.

The idea that the Earth’s rocks were deposited in a sequence of layers, each representing a different time period and containing distinctive fossils, emerged in the late 18th century. The first full geological timescale, published in 1913, is similar to the timescale used today, from the Precambrian rocks that are host to the first primitive life forms, to the Jurassic rocks in which dinosaur fossils are found, and Quaternary rocks, in which we find the fossils of the first humans along with now-extinct large mammals like woolly mammoths and sabre-toothed cats.

So, why do we need an “Anthropocene”? The word was popularised in 2000 by Nobel Prize-winning atmospheric chemist Paul Crutzen, who suggested the entire Holocene, the epoch that started about 12,000 years ago and is marked by a warm interglacial period and the proliferation of new species, be redefined as the Anthropocene. Crutzen is now on a working group that will report to the International Commission on Stratigraphy (ICS) – which determines changes to the geological timescale – arguing for formal adoption of the Anthropocene as a new geological epoch. There is debate over when the Anthropocene should be defined as starting – at the onset of the agricultural revolution or at the onset of the Industrial Revolution – but there is no doubt that human beings have made their mark on the planet, with some of the biggest impacts being in terms of species extinction, changes to the carbon, nitrogen and phosphorus cycles, and the creation of an “urban stratum” of built, mined, drilled and engineered structures.

But what about New Zealand? I asked GNS Science palaeontologist Hamish Campbell, if another civilisation were to come to New Zealand in 10,000 years’ time, what signs of the Anthropocene would they find preserved in our sedimentary rocks?

“The easiest way to recognise the onset of Anthropocene time in New Zealand, as being the first humans arriving here, would be from changes in pollen abundance,” says Campbell. In many parts of New Zealand, pollen grains – which are much more readily preserved than plant matter – would reflect the change from native forests to grasslands. In terms of animal fossils, we’d see a change from New Zealand’s native avifauna to introduced mammals, with “a preponderance of remains of domesticated animals … an awful lot of hens, pigs, cows, and sheep”. And, of course, humans.

Fossils aren’t the only signs of change. “With the Industrial Revolution we get a very clear metal signal,” says Campbell. Roofing materials brought into New Zealand from the mid-19th century – first copper, lead, zinc and iron, and later aluminium – have leached into our waterways, leaving traces in harbour, lake and estuarine sediments.

In terms of the “urban stratum”, what would remain? “Concrete, bricks, asphalt, metal – they are going to survive,” says Campbell. And pipes. With large areas of east Christchurch about to be abandoned, for example, it’s likely the houses will be demolished and removed, but not the pipes underneath. “The hallmarks of human occupation will be the sewer pipes, water mains and gas pipes,” says Campbell. “They’ve been excavating sewers associated with Pompeii and are finding all the trappings of life at the time, in the form of jewellery and oil lamps that people dropped down the loo at night … nowadays the most common item found in the sewer is the cellphone.” An urban stratum of sewers and cellphones? Let’s hope that a few time capsules are preserved to present a less prosaic remnant of our civilisation.

Fossils are, however, notoriously difficult to make. The natural forces of decay – oxidation, bacterial action and UV radiation – work against the preservation of plant and animal fossils and human artefacts. The best way to preserve something is in a cold, dark, still, muddy environment or beneath deposits from a catastrophic event like a major flood, a mudslide or a volcanic eruption. “Supervolcanoes in the central North Island have the propensity to generate superheated sheets of pyroclastic debris. With the collapse of the eruption column, they just race out across the landscape at up to 800km an hour, almost frictionless. They would just bury everything; you would get instantaneous preservation of cities and towns underneath all this ignimbrite.”

Which is a reminder that no matter how much of an impact we’re having on the natural environment, we’re still at the mercy of physical processes. “We’re powerless when it comes to fighting seismicity and mountain building and volcanism.

Our biggest impact is not so much in physically rearranging the landscape, putting roads and things in; our biggest impact is biological.”

So, does Campbell think the ICS will accept the proposal to declare our current epoch the Anthropocene? “Absolutely. And philosophically, I think it’s quite important. There’s no escaping the fact that we’ve having a massive impact on the planet, and we’re all in this together. The way forward is for societies to plan for, to mitigate against, possible changes. Will recognition of something called the Anthropocene help? I think it might.”

Posted in Listener science | Tagged , , | Leave a comment

Galileo in Florence

This story first appeared in The Listener, issue 3688, 15 January 2011. 

I’d come a long way to see Galileo’s arthritic middle finger, but recognised the great 17th-century astronomer’s aged appendage – displayed in a gilt-edged glass egg in a Florence museum – as human only by the fingernail at the end: the fossil-like protuberance looked more like an old chicken bone discarded after the cat had been at the rubbish bag.

Galileo’s finger took pride of place, behind a bust of the great astronomer, in Galileo, an exhibition hosted by Florence’s Museum of the History of Science to cele­brate 400 years since Galileo changed our picture of the universe by making the world’s first astronomical observations. Surrounding the finger were the fruits of Galileo Galilei’s work – his notebooks and instruments and copies of his books – from which I learnt about the life of this Tuscan-born mathematician and natural philosopher.

In 1609, after learning of the invention of the telescope, he set about making his own. The short tube, with a lens at each end, allowed the magnification of distant objects by up to three times, and was being sold primarily as a toy. Galileo’s plan was to manufacture and sell his refined instrument in Venice for military and trade purposes – the advantage of being first to see which ships were coming into port would be enormous – but he soon realised the telescope could also be used to explore the night sky. By the end of 1609, Galileo had built a telescope with a magnifying power of 20 times, which he used to observe the moon, the planets and the stars. He discovered the four brightest moons of Jupiter, observed that the Earth’s moon was not smooth, but had mountain ranges, valleys and craters, and saw that the Milky Way was made of millions of individual stars. He published his initial results in 1610 and gained not just wealth and prestige in his native Tuscany but also international fame.

Galileo’s finger might have been in Palazzo Strozzi, but the rest of him was in the nearby Basilica di Santa Croce. I found the church in Piazza Santa Croce, which was all decked out for an evening performance of Dante’s Divine Comedy, but by now it was lunchtime and I had a family commitment. I walked down a small lane off Piazza Santa Croce to Santa Croce Wine Company, a boutique wine shop specialising in Tuscan wines, with its own line of specialty foods such as giant cerignola olives from Apulia, tuna-stuffed baby peppers in olive oil, and award-winning Tuscan dark chocolate.

The shop belonged to my sister Rachel Priestley. Eight years as a food and beverage ­consultant in Italy has given her a remarkable aptitude for Italian curses and an extensive knowledge of Italian food and culture that she used to stock her shop with the best Italy has to offer. Her New Zealand provenance might help to attract English-speaking tourists, but in my eyes she’s fully Italian. When I suggested grabbing a panini for lunch, the look of horror that crossed Rachel’s face was pure Latin. Lunch in Italy is a serious sit-down affair. With wine. I sighed and succumbed.

Rachel had visited the markets that morning and we were in for a taste of Tuscany’s finest flavours. As a lapsed vegetarian, I was a bit squeamish about some of the treats on offer – Tuscany’s traditional fritto misto, or mixed fry, includes lambs’ brains, tripe, rabbit and chicken, which didn’t tempt me – but there were plenty of vegetarian dishes to choose from. We started our meal with a ubiquitous glass of prosecco, an Italian sparkling white wine made from prosecco grapes. The wine has a light, floral flavour, and is drunk while fresh and young – and often early in the day. First course was a carpaccio of porcini and ovuli, a scary-looking fluorescent orange fungus. The raw mushrooms were sliced thinly and served with shaved parmesan and a skinny green Tuscan weed, nepitella, that tastes like mint and grows wild near the porcini in the Tuscan hills. At the market that morning, Rachel had tried to touch one of the ovuli but the protective seller, with cigarette hanging out of his mouth, warned her off. If they have been touched, he warned, he could not sell them. She asked instead to taste a cherry tomato. “Porca miseria“, he said and shrugged: his “pig’s misery” meant “go ahead, whatever”. The pigs may have been more miserable about the next course, though; it was luscious fresh figs with finocchiona, a Tuscan pork and fennel salami. And after that, it was zucchini flowers. Italian cooking is strictly regional, and the consistency of a dish is vital. Because the zucchini were grown in Tuscan soil, Rachel sautéed the flowers in a light Tuscan olive oil and added a splash of Vernaccia di San Gimignano, a minerally white Tuscan wine. The rest of the bottle we drank. Topping off the meal was a simple tomato salad served with chopped celery, basil, parsley and green capsicum. Rachel tasted the sun in the strongly flavoured dark-red cherry tomatoes and paired them with a peppery olive oil from Apulia, where the olive-producing trees are more than a thousand years old and have trunks the size of a small car.

By now a good hour and a half had passed, some customers had popped in for a wine tasting, and we were fully sated. Passing on the chance to have a digestivo, a traditionally herby alcoholic beverage designed to aid digestion after a meal, I decided to pay my respects to the rest of Galileo. Galileo’s astronomical discoveries, along with his mathematical reasoning, provided evidence for Copernicus’s 1543 astronomical model that placed the sun, rather than the Earth, at the centre of the universe. Galileo’s endorsement of Copernican ideas led to a Papal commission, which concluded the idea that the sun was the centre of the universe was foolish, absurd and heretical. In 1616, Galileo received a warning from the Pope, and another from the Inquisition. In 1632, despite a previously amic­able relationship with the Pope, Galileo was summoned to Rome to stand trial for heresy after publication of a new book supporting the Copernican model. With the choice between confession to heresy or torture/death at the hands of the Inquisition, Galileo “confessed” and renounced his belief in the Copernican model. His sentence of life imprisonment was softened and he was allowed to return to his home in Arcetri, near Florence, where he was confined until his death. He died peacefully in 1642, having escaped the wrath of the Inquisitors and the curse of the plague, but suffering painful arthritis.

Galileo was initially buried next to a small chapel, but in 1737, when his remains were moved to the sepulchre at Santa Croce, his finger was removed and exhibited in a library. Galileo’s mausoleum inside Basilica di Santa Croce shows Galileo staring up at the stars, surrounded by the symbols of his work – a sun-centred solar system, a telescope, and symbols of geometry and astronomy. I left the basilica impressed by Galileo’s legacy, and ready for some of Florence’s famous wild-strawberry gelato.

Posted in History of science, Travel | Tagged , , , , | Leave a comment

Kermadecs voyage #2: The mystery of the floating pumice

I was planning to write this personal blog at the same time as writing one for Scientific American, but I’m so busy circumnavigating islands in a RHIB, flying into volcanic craters in a Navy Seasprite, fishing for sharks off the back of the HMNZS Canterbury and helping rescue Kermadec storm petrels (it’s my job!) that I haven’t found the time. You can read my Scientific American blog posts but by all the media calls coming into the ship about the pumice raft we encountered a couple of days ago, I’m guessing that there might be a bit of interest in it (I have no internet connection here, just the ability to send out pre-arranged emails using a New Zealand military email addresses).

Just to summarise, here’s the story of the pumice, as I’ve posted on Scientific American’s expedition blog:

Wednesday 8 August 2012

“You can’t escape the geology in New Zealand,” said Helen Bostock, a marine geologist on the voyage. “It’s in your face whether you like it or not.”

It’s true. As we left Auckland this morning we were sailing away from two erupting volcanoes: Tongariro, in the middle of the Taupo Volcanic Zone, had just erupted for the first time in more than 100 years, depositing ash around the central North Island. White Island, a busy little volcano in the middle of the Bay of Plenty, was erupting ash from its Crater Lake.

So where are we heading? We’re sailing north along a chain of underwater volcanoes to another active volcano, Raoul Island, about two days sailing from Auckland. Raoul Island – the top 516 meters of a submerged volcano whose slopes extend for thousands of meters beneath the ocean – last erupted in 2006 and we hope it will stay quiet for our visit.

Thursday 9 August 2012: 

… at midday, our Commanding Officer, Commander Sean Stewart, gave the order to change course. A marine patrol aircraft, flying from Samoa to New Zealand, had spotted “an event” in the ocean north of us. Up to 250 nautical miles long by 30 nautical miles wide, it stood out against the blue-grey of the ocean as a great white froth on the surface of the sea.

Marine geologist Helen Bostock said the deposit could be a mixture of ash and pumice from an underwater volcanic eruption. There was only one way to find out – sample it. By the time we reached the deposit, the ash had dispersed, but blocks of pumice were bobbing past us in the water.

Commanding Officer Sean Stewart and Chief Petty Officer Henry Matangi with a big piece of pumice collected by Matangi. Photo by Helen Bostock.

Sometimes science is about using whatever tools you can find when faced with a serendipitous opportunity. At Helen’s request, a couple of young Navy ratings lowered buckets, tied to a rope, off the gun deck and down into the water. There was a big cheer when they came up with a few small pieces of pumice – brand-new, freshly-minted rock – in the bucket.

But from where? We have some people on board from Geonet, whose role is to monitor seismic and volcanic activity around New Zealand. They say that Monowai, an undersea volcano north of Raoul Island, has been showing activity for the past five days. Helen says that when she gets the pumice back to her NIWA laboratory, they will do a chemical analysis. “It’s like genetic fingerprinting,” she says. “Each volcano has it’s own chemical signature”. If this pumice matches Monowai, or one of the other existing volcanoes, that’s where it’s from. If it doesn’t match anything, it could be from a new volcano.

Friday 10th August 2012

Last night, when Lieutenant Tim Oscar, the Officer of the Watch, arrived at the bridge for his midnight to 4am watch (seriously, that’s what they do, all the lights on the bridge are turned off and they watch the sea) he noticed something strange. He turned the ship’s spotlights on and discovered the ship was ploughing through the wall of pumice we were looking for yesterday. The ship travelled through it for half a nautical mile, and he estimates it was two feet thick and extended sideways as far as the eye could see. “It was like being an ice-breaker hitting an ice shelf,” he said this morning. He described it as “the weirdest thing I’ve seen in 18 years at sea.”

It was too dark and the ship was going too fast to stop and take samples, so he noted down the latitude and longitude (29 59.43 degrees south and 179 25.598 degrees west) and motored on through it.

Saturday 11th August 2012

Helen Bostock with a handful of pumice collected off the side of the HMNZS Canterbury.

The engineering crew checked the ship’s water filters yesterday and, along with the usual mess of leaves and seaweed, they found a lot of small pieces of pumice. These filters, which suck in water to cool the ship’s engine, are about 10 feet below the sea surface, so when the ship went through the pumice raft on Thursday night it sucked up a lot of pumice with its water. Today, they’re giving the water filters a thorough clean. Helen Bostock has a new collection of pumice to take back to her lab in Wellington and I have a couple of small souvenirs to take home.

I’m transferring to Raoul Island tomorrow. If the weather packs in, as predicted, I’ll have time to write some more.

Posted in Kermadecs, Science, Travel | Tagged , , , , | 5 Comments